DL-4 CNN basic
Convolution layer 계산
-
output size $(N-F+2P) / S + 1$
-
number of parameters $K(F^2N + 1)$
N : input D
F : filter D
P : padding
S : stride
K : Number of filters
Pooling 의 경우
-
output size $(N-F) /S+ 1$
-
number of parameters $0$ (no learning happens)
1x1 convolution 왜 함?
- dimension reduction
- 깊이는 깊어지면서도 reduce number of parameters
- bottleneck architecture
댓글남기기