NLP1 - Intro
주재걸 교수님
NLP processing(이걸로 수업할 예정)
-
학회 : ACL, EMNLP, NAACL
-
- Low level parsing
- Tokenization, stemming
-
- Word and phrase level
- NER(Named entity recognition), POS(part-of-speech) tagging, noun-phrase chunking, dependency parsing, coreference resolution
-
- Sentence level
- Sentiment analysis, machine translation
-
- Multi-sentence and paragraph level
- Entailment prediction, question answering, dialog systems, summarization
Text mining
-
학회 : KDD, The WebConf(formerly,WWW), WSDM, CIKM, ICWSM
-
텍스트 데이터로부터 information, insight 추출할때
-
Document clustering
-
computational social science에도 관련됨
Information retrieval
-
학회 : SIGIR, WSDM, CIKM, RecSys
-
정보 검색 분야
Trends of NLP
- Word2Vec : word embedding
- RNN-family models : LSTMs, GRUs
-
Attentions & transformers
- self-supervised training setting (no additional labels)
Bag-of-Words
1) Constructing the vocab containing unique words
2) Encoding unique words to one-hot vectors
ex)
NaiveBayes Classifier
특정 문서 d 가 속할 확률이 가장 높은 C
= c가 고정이 되었을 때 d가 나올 확률
각 단어들의 확률을 구할 때는 MLE로 부터 도출이 됨
댓글남기기